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This paper presents an error estimation and grid adaptive strategy for estimating
and reducing simulation errors in integral outputs (functionals) of partial differen-
tial equations. Adaptive criteria are derived using an adjoint-based error correction
technique that relates the local residual errors of both the primal and adjoint solu-
tions to the global error in the prescribed functional. This relationship allows local
error contributions to be used as indicators in a grid adaptive strategy designed to
produce specially tuned grids for accurately estimating the chosen functional. In
this paper, attention is limited to two-dimensional inviscid flows using a standard
finite volume discretization, although the procedure may be readily applied to other
types of multidimensional problems and discretizations. Numerical examples demon-
strate that the proposed adaptive procedure compares favorably in terms of accu-
racy, efficiency, and robustness relative to a commonly used gradient-based adaptive
method. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

Computation simulations of complex aerodynamic flows have become integral com-
ponents of the design process in the aerospace industry due to their potential to provide
valuable physical data thereby reducing the need for costly wind tunnel testing. Increasing
reliance on computer simulations necessitates a corresponding increase in the accuracy
and reliability of the underlying algorithms. Furthermore, large-scale simulations must be
made more affordable so that their potential benefits can be fully realized within the design
cycle.

A well-known strategy for minimizing the cost of a computational simulation while
achieving a given level of accuracy is grid adaptation [3–5, 7, 13, 17, 18, 20]. The basic
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premise is to locally enrich the computational grid in regions which most adversely affect
the accuracy of the final solution while coarsening the grid in more benign regions to pre-
vent incurring unnecessary computational costs. A major difficulty in achieving definite
improvements using adaptation for Euler and Navier–Stokes calculations is the lack of a re-
liable error indicator. For example, a common strategy is to adapt to certain physical features
of the flow, such as shock waves, boundary layers, wakes, slip lines, or stagnation points, by
employing indicators based on large flow gradients [3, 5, 7, 13, 18]. The assumption here
is that regions of larger gradients are associated with regions of larger error. Unfortunately,
continuous local refinement of the dominant flow features does not necessarily guarantee
that certain measures of the global error will simultaneously be reduced. In some cases this
procedure may even lead to incorrect results [18].

Another concern is the choice of the error measure. Even within the setting of finite-
element-discretized elliptic problems, where rigorous and robust error estimators have been
available for decades [1, 16, 20], one can argue that a global error norm based directly on the
solution and its derivaties may not be optimal within an engineering context. An alternate
approach to making error estimation more relevant to engineering applications is to assess
the error made in predicting an integral quantity representing an engineering output. For
example, in aerodynamic applications, outputs of interest include the lift, drag, and moment
coefficients on aircraft configurations. These are all expressible as surface integrals over
portions of the domain boundary. Other examples include the total losses across a blade
row in a gas turbine engine or the total heat flux to a turbine blade. In combustion modeling
one is often concerned with the total production of nitrous oxides. When modeling soil
contamination, a key quantity could be the net seepage of a pollutant into an aquifer. In
electrochemical simulations of the behavior of sensors, the quantity of interest is the total
current flowing into an electrode [14].

Within the context of finite element methods for fluid dynamics, error estimation and
bounding procedures for functional outputs have been outlined by Becker and Rannacher
[4], Larson and Barth [8], and Machiels et al. [10]. They are based on concepts already
known from structural finite element methods [1, 2]. These procedures invoke the concept of
duality, in which an equivalent dual (adjoint) formulation of the primal problem is exploited.
The primary benefit of invoking the dual problem, in the context of grid adaptation, is that
the error in a chosen functional can be directly related to local residual errors of the primal
solution through the adjoint variables. This property elucidates the potential for devising
optimal grid adaptive strategies designed to produce specially tuned grids for maximizing
the accuracy of a particular functional.

Pierce and Giles [14] have developed an adjoint-based error correction technique for
functional outputs. This technique extends superconvergence properties, automatically in-
herent in many finite element methods, to cover numerical results obtained from any nu-
merical method, including finite difference, finite volume, or finite element without natural
superconvergence. Moreover, the technique can also be used to improve the accuracy of su-
perconvergent functionals obtained from finite element methods by constructing smoother,
higher-order interpolants of the primal and dual solutions [14].

In this paper, a novel adjoint-based error correction and grid-adaptive methodology is
presented for reducing simulation errors in specified functional outputs. The error correction
procedure is a discrete analogue of the Pierce and Giles [14] technique. The correction
terms and adaptive indicators used in this work have already been incorporated into an
adaptive scheme for the quasi-one-dimensional Euler equations [17]. This paper focuses
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on multidimensional applications of the same theory with particular emphasis on functional
outputs of the two-dimensional Euler equations. To the authors’ knowledge, this is the first
application of adjoint-based correction and adaptation for a finite volume discretization of
the Euler equations in multiple dimensions.

We begin by outlining the adjoint error correction procedure. The procedure involves
estimating the error in the functional with respect to its value on a globally refined fine grid.
Solutions on the fine grid are not required. The only auxiliary computations are functional
and residual evaluations on the fine grid, and the solution of a linear adjoint problem on
the original coarse grid. Next, we proceed to outline the adaptive procedure. The adaptive
algorithm strives to improve the quality of the aforementioned error estimate by locally
refining the coarse grid in select regions of the domain. At the next iteration, a new fine grid
is defined with respect to the newly adapted coarse grid and the process is repeated until
convergence. Convergence is defined in terms of local and global adaptation parameters
and a prescribed error level for the computed functional.

Several numerical test cases are provided to demonstrate the effectiveness of the error
estimation and adaptation procedure. These include subsonic and transonic flows (ranging
from M∞ = 0.26 to M∞ = 6.0) around single-element and multiple-element airfoil config-
urations. The functionals chosen are those of primary interest in aeronautical applications:
lift, drag, and moment coefficients. The proposed adaptive procedure is compared with a
commonly used gradient-based method [3, 5, 18]. The proposed method is shown to com-
pare favorably in terms of accuracy, efficiency, and robustness relative to the gradient-based
method.

2. ERROR ESTIMATION PROCEDURE

In this section, we present a concise description of the adjoint error estimation and
correction procedure used in this work. The impetus for this procedure is the correction
technique of Pierce and Giles [14].

Consider a coarse grid, �H , as being an affordable grid with respect to available comput-
ing resources and allowable solution times. The parameter, H , represents a characteristic
length associated with the grid such as the average edge length in a finite element triangu-
lation or the average grid spacing in a finite difference approximation. We are interested in
estimating an integral quantity, f (U ), where U is the solution of the system of partial dif-
ferential equations (PDEs) under consideration. The approximation of this integral on �H

using a prescribed quadrature rule is denoted by fH (UH ), where UH is the corresponding
discrete solution obtained on �H using a specified discretization method.

Although fH (UH ) can be computed affordably, it may not be sufficiently accurate for the
intended application. Now consider a fine grid, �h , that may be prohibitively expensive for
the purposes of estimating f (U ); however, if a discrete solution, Uh , were obtained on �h ,
the corresponding discrete integral, fh(Uh), would be sufficiently accurate for our purposes.
We require that �h be uniformly embedded within �H except at the boundaries where �h is
made to conform to the continuum boundary, ∂�. For example, if �H were a triangulation,
one way of constructing �h would be to subdivide each of the triangles of �H into an
integer number, N 2, of self-similar triangles where N = (H/h). The fine-grid boundary
nodes could then be repositioned to coincide with ∂�. Figure 1 shows a patch of elements
in a typical coarse grid and two possible fine grids corresponding to N = 2 and N = 7. Note
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FIG. 1. A typical coarse grid and two possible fine grids that may be used in the error estimation procedure.
Left: patch of coarse-grid elements near the airfoil boundary; center: superimposed fine grid corresponding to
N = 2; right: superimposed fine grid corresponding to N = 7. Note that the fine grids conform to the original
airfoil boundary.

that a hierarchy of fine grids corresponding to N = 2, 3, . . . could be constructed in this way
and that each grid in the hierarchy would be completely characterized by N with respect to
the original coarse grid.

If �H were a three-dimensional grid composed of tetrahedra, a slightly different ap-
proach would be required since it is not possible to subdivide a tetrahedron into self-similar
tetrahedra. Alternatively, a 1 : 12 refinement ratio can be achieved by adding nodes to the
midpoints of each of the edges of the original tetrahedron and by adding one more node
to its centroid. The application of this systematic refinement algorithm to each tetrahedron
in the coarse grid would yield a legitimate fine grid for the purposes of the error estima-
tion procedure. Recursive repetition of this process would result in a hierarchy of grids
where each successive grid would be embedded within the previous one. As in the two-
dimensional case, each fine grid should be made to conform to the original continuum
boundary, ∂�.

For the moment, let us consider a single fine grid, �h . Our goal is to obtain an accurate
estimate of fh(Uh) without ever solving on the fine grid. The point of departure in this
analysis is an expansion of fh(Uh) about the coarse-grid solution

fh(Uh) = fh
(
U H

h

) + ∂ fh

∂Uh

∣∣∣∣
U H

h

(
Uh − U H

h

) + · · · . (1)

The row vector, ∂ fh/∂Uh |U H
h

, contains the linear sensitivities of the fine-grid functional
with respect to the fine-grid solution vector evaluated using the coarse-grid solution. The
column vector, U H

h , represents the coarse-grid solution expressed on the fine grid via some
consistent reconstruction or projection operation, viz,

U H
h ≡ I H

h UH . (2)

An appropriate definition for I H
h depends on the underlying discretization method [17]. In

the case of a finite difference scheme, I H
h could represent higher-order interpolation through

the computed nodal values of the finite difference solution. In the case of a finite element
discretization, U H

h could be obtained from the coarse-grid basis functions directly or from
a higher-order projection [14]. The projection operators used in this work are described in
Section 4.5.
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The nonlinear residual operator representing the system of equations arising from some
discretization of the original partial differential equations on the fine grid is denoted by

Rh(Uh) = 0. (3)

It is assumed here that Rh(Uh) represents an integral statement such as one that would arise
naturally from a finite element or finite volume formulation. A typical finite difference stencil
would need to be scaled by an appropriate volume term (or area term in two dimensions)
so that the residual became analogous to an integral expression.

Linearizing (3) about the coarse-grid solution yields

Rh(Uh) = Rh
(
U H

h

) + ∂ Rh

∂Uh

∣∣∣∣
U H

h

(
Uh − U H

h

) + · · · , (4)

where ∂ Rh/∂Uh |U H
h

is the Jacobian of the fine-grid system of equations evaluated using the
projected coarse-grid solution. Symbolically, we can invert (4) (assumed nonsingular due
to well-posedness) to obtain an approximation of the error vector,

(
Uh − U H

h

) ≈ −
[

∂ Rh

∂Uh

∣∣∣∣
U H

h

]−1

Rh
(
U H

h

)
. (5)

Substituting (5) into (1) yields an estimate for the functional,

fh(Uh) ≈ fh
(
U H

h

) − (
	h |U H

h

)T
Rh

(
U H

h

)
, (6)

where 	h |U H
h

is the discrete adjoint solution satisfying

[
∂ Rh

∂Uh

∣∣∣∣
U H

h

]T

	h |U H
h

=
(

∂ fh

∂Uh

∣∣∣∣
U H

h

)T

. (7)

Equation (6) is an estimate of fh(Uh). It is exact for linear residuals and functionals. To
compute this estimate would require the solution of the adjoint problem on the fine grid,
which is undesirable. Instead, 	h |U H

h
is replaced by the interpolated coarse-grid adjoint,

	H
h ≡ J H

h 	H , (8)

where J H
h is a projection operator analogous to I H

h in (2). The coarse-grid adjoint, 	H , is
obtained from the solution of the discrete adjoint equations on the coarse grid,[

∂ RH

∂UH

]T

	H =
(

∂ fH

∂UH

)T

. (9)

The projection operation in (8) requires that the discrete adjoint 	H be consistent with
the true analytical adjoint. This may have implications regarding the imposition of certain
boundary conditions in the definition of the primal residual operator [16].

Substituting the interpolated coarse-grid adjoint into (6) yields the final, computable
estimate as

f̃h(UH ) = fh
(
U H

h

) − (
	H

h

)T
Rh

(
U H

h

)
. (10)
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The coarse grid, �H , should be fine enough to capture the essential features of the problem
under consideration (that is, the corresponding discrete solution, UH , should be within the
asymptotic range) in order for the truncated expansions, (1) and (4), to be uniformly valid.

It should be noted that the correction formula given by (10) is a discrete analogue of the
Pierce and Giles correction term [14]. The current derivation utilizes the notion of a fine grid
and appeals directly to the nonlinear, discrete residual equations, whereas the Pierce and
Giles derivation is cast in a continuous framework. In the continuous approach, the vector
inner product of the adjoint and the discrete residual in (10) is replaced by an integral inner
product of the adjoint and the residual of the governing partial differential equations using
approximate adjoint and primal solutions. Both approaches have been shown to produce
superconvergent functional estimates. Further discussion comparing the two approaches,
including implementation issues, is provided in reference [17].

3. ADAPTATION PROCEDURE

In this section, an adaptive strategy is proposed that is designed to improve the accuracy
of the computable error estimate in (10). This is in contrast to other adaptive schemes that
attempt to optimize the computational grid with respect to maximizing the accuracy of the
functional directly [4]. One variant of the latter approach could be based exclusively on
(10), where it is evident that the error in the functional can be expressed as a weighted sum
of the local residual errors with the adjoint variables as the weighting functions. These local
error contributions could be used as indicators in a grid adaptive strategy designed to yield
nearly optimal grids for computing the chosen functional. Unfortunately, this approach
could lead to erroneous requests to the grid generator for refinement and / or coarsening
in regions where the adjoint solution is not sufficiently resolved. We wish to reduce this
risk by deriving a more conservative criterion for adaptation that is based on both the
primal and adjoint residual errors. The proposed adaptive strategy involves reducing and
equidistributing the value of an adaptation parameter throughout the computational domain.
We will demonstrate that reducing the proposed adaptation parameter leads to improvements
in the quality of the error estimates. In practice, it also leads to improvements in the base
value of the functional before correction.

3.1. Error in the Computable Correction

We begin by examining the remaining error in the functional after correction. Equation (6)
can be decomposed in the following manner,

fh
(
U H

h

)− fh(Uh) ≈ (
	H

h

)T
Rh

(
U H

h

)︸ ︷︷ ︸
Computable correction

+ (
	h |U H

h
− 	H

h

)T
Rh

(
U H

h

)
︸ ︷︷ ︸

Error in computable correction

. (11)

Alternatively, (11) may be recast as

fh
(
U H

h

) − fh(Uh) ≈ (
	H

h

)T
Rh

(
U H

h

)︸ ︷︷ ︸
Computable correction

− {
R	

h

(
	H

h

)}T

[
∂ Rh

∂Uh

∣∣∣∣
U H

h

]−1

Rh
(
U H

h

)
︸ ︷︷ ︸

Error in computable correction

, (12)



46 VENDITTI AND DARMOFAL

where R	
h is the adjoint residual operator defined by,

R	
h (	) ≡

[
∂ Rh

∂Uh

∣∣∣∣
U H

h

]T

	 −
(

∂ fh

∂Uh

∣∣∣∣
U H

h

)T

. (13)

A third form of the error in the computable correction (ECC), which is dual to that given in
(11), can be obtained using (4) and (12). Specifically,

fh
(
U H

h

) − fh(Uh) ≈ (
	H

h

)T
Rh

(
U H

h

)︸ ︷︷ ︸
Computable correction

+ {
R	

h

(
	H

h

)}T (
Uh − U H

h

)︸ ︷︷ ︸
Error in computable correction

. (14)

The proposed adaptive strategy is based on reducing the ECC, thereby improving the ac-
curacy of the computable correction. It is evident from (11), (12), and (14) that the ECC can
be written in at least three different forms. According to (12), reducing the local residual
errors in both the primal and adjoint solutions simultaneously would lead to a reduction in
the ECC. Adapting on both residuals seems advantageous with respect to the robustness
of the procedure. In using this form, however, one must address the issue of how to decrease
the two residuals simultaneously during the adaptive procedure. In general, the units of the
primal and adjoint residuals will be different and their magnitudes could vary significantly.
A viable adaptive scheme must ultimately combine the two residuals into a single adaptation
parameter for each cell or element in the grid. For the purposes of adaptation, (11) and (14)
provide more convenient forms of the ECC from which to work with. In particular, the
ECC can be expressed as the inner product of the adjoint solution-error and the primal
residual-error, (11), or as the inner product of the adjoint residual-error and the primal
solution-error, (14). When nonlinear terms are neglected, these two inner products are
equal. The magnitudes of their corresponding components are comparable and their units
are equal to those of the functional, f (U ). This illustrates the duality between the primal
and adjoint residual operators. If nonlinear effects are accounted for, a duality gap, D �= 0,
will exist between the two inner products. By retaining nonlinear terms in (4), one can
obtain an expression for the duality gap,

D ≡ (
	h |U H

h
− 	H

h

)T
Rh

(
U H

h

) − {
R	

h

(
	H

h

)}T (
Uh − U H

h

)
,

= −(
	h |U H

h
− 	H

h

)T
W, (15)

where W is a vector containing quadratic forms of the primal error. An explicit expression
for W is given in reference [17]. The proposed adaptive procedure is based on reducing
and equidistributing the magnitudes of the components of each of the inner products on the
right-hand side of (15). In addition to improving the quality of the computable correction,
this will lead to a reduction in the magnitude of the duality gap, and hence, a reduction in
the nonlinear contribution to the functional error.

The form of the ECC shown in (11) is essentially what is used by Becker and Rannacher
[14] in their output-based adaptive strategy. The addition of the dual ECC term, shown in
(14), in the current approach is a natural way of incorporating the adjoint residual error
into the adaptive scheme. It is expected that utilizing information from both the primal and
adjoint residuals will lead to a more robust adaptive algorithm.
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3.2. Adaptive Criteria

The philosophy adopted for the current adaptive framework is to allow the user the
freedom to specify control parameters that are most relevant within a practical engineering
design context. One or more of these parameters will ultimately define the termination
criteria for the adaptive algorithm. The parameters that may be prescribed a priori in the
current strategy include: (1) a desired remaining error level for the functional of interest;
(2) an upper limit on the total number of degrees of freedom in the simulation; (3) an
upper limit on the total computing time; and (4) an upper limit on the total number of
adaptive iterations. One additional parameter is required that is not directly related to the
aforementioned needs of the user: a lower bound on the local element size due to machine
round-off issues.

In the proposed adaptive strategy, we seek to reduce and equidistribute the value of an
adaptation parameter throughout the computational domain while simultaneously moni-
toring and reducing an upper bound on the estimated error in the functional of interest.
Consider the operation of computing an inner product over the fine grid, �h , embedded
within �H . For each coarse-grid element, k, there are N 2 (in two dimensions) fine-grid
elements over which a partial inner product must be computed. For each fine-grid node,
l(k), within element k, there are four subcomponents (for the two-dimensional Euler equa-
tions) to the primal and adjoint residual vectors corresponding to the mass, x-momentum,
y-momentum, and energy conservation equations. Equation (15) suggests the following
definition for the adaptation parameter, εk , at element k:

εk = 1

2

∑
l(k)

{∣∣[Q H
h 	H − L H

h 	H
]T

l(k)

[
Rh

(
L H

h UH
)]

l(k)

∣∣
+ ∣∣[Q H

h UH − L H
h UH

]T

l(k)

[
R	

h

(
L H

h 	H
)]

l(k)

∣∣}. (16)

In this last expression, a term of the form, [Vh]l(k), for some generic vector, Vh , on �h , refers
to the 4 × 1 subvector (component) of Vh corresponding to the fine-grid node, l(k), within
the coarse-grid element, k. The summation in (16) is over all fine-grid nodes within the kth
coarse element. For those nodes on the boundary of k, a partial contribution may be implied
depending on how the nodal residual is defined for the particular discretization. For example,
in the case of a vertex-based finite volume discretization, the fractional contribution from a
node on the boundary of element k is proportional to the fraction of the associated control
volume within that element. The operators L H

h and Q H
h are interpolation operators that map

coarse-grid vectors onto the fine grid via linear and quadratic interpolation, respectively
(see Section 4.5).

Let ε denote the summation of εk over all elements in �H . That is,

ε =
∑

k

εk . (17)

It is evident from (11) and (14) that if the absolute values signs had been absent in (16),
the summation of the corresponding elemental quantities over �H would have yielded an
estimate of the remaining error in the predicted functional after correction. Thus, ε, as
presently defined, represents an upper bound on this error estimate. In light of this, a global
adaptation parameter can be defined as

ηg = ε

eo
, (18)
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where eo is a user-specified desired error level. The global error criterion is satisfied if
ηg ≤ 1 while further refinement is required if ηg > 1. Using this measure alone would lead
to uniform grid refinement only. To complete the h-refinement strategy a local adaptation
parameter must also be defined. An appropriate local error measure can be determined by
invoking the principle of error equidistribution [3, 19]. In particular, an attempt is made to
equidistribute εk over all elements in the domain. In this vein, a local adaptation parameter
is defined as

ηk = εk

ēo
, (19)

where ēo = eo/Ne is the target error for each element and Ne is the total number of elements
in the current grid, �H . The local criterion is satisfied if ηk ≤ 1 while further refinement of
element k is indicated if ηk > 1. Finally, at each adaptive iteration, a new desired element
size, H̃ k is computed from the old one, Hk , according to

H̃ k = Hk

(
1

ηgηk

)ω

. (20)

The parameter ω controls how aggressively each subsequent grid is refined during the itera-
tive adaptive process. An inappropriately large choice for ω would lead to over-refinement,
resulting in a suboptimal final grid with more elements than is necessary for the prescribed
level of error. Conversely, an inappropriately small value would lead to under-refinement,
which would prolong the adaptive process by increasing the total number of adaptive it-
erations to convergence. An appropriate value for ω can be deduced by examining the
asymptotic convergence rates of the global and local adaptation parameters. Numerical re-
sults indicate (see Section 5.2) that ηg ∼ ηk ∼O(H̄ p) with 2 ≤ p ≤ 3, where H̄ is an average
element size in the grid. These results were obtained by monitoring the convergence of ηg

and ηk on a series of uniformly refined grids for a subsonic test case without geometric
irregularities. A heuristic for determining ω is to render the new element size independent
of its current size; that is, to choose ω such that H̃ k ∼O(1). In the present case we assumed
a convergence of ηgηk ∼O(H 4

k ) yielding a heuristic value of ω = 1/4, which was used in
all the output-based adaptive simulations in this paper. This simple convergence rule is
not valid near singularities, discontinuities, or geometric irregularities. Nevertheless, the
adaptive procedure exhibited robust grid-convergence, usually terminating after three or
four adaptive iterations. The algorithm used to refine the grid is described in Section 4.6.

4. NUMERICAL IMPLEMENTATION

The proposed error estimation and grid adaptive procedure is implemented using a stan-
dard, unstructured grid, finite volume discretization of the two-dimensional Euler equations.

4.1. Governing Equations

The time-dependent Euler equations are expressions of the principles of mass, momen-
tum, and energy conservation for an inviscid, compressible gas. In two dimensions these
equations may be written as

∂U

∂t
+ ∂ F

∂x
+ ∂G

∂y
= 0, (21)
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where U, F , and G are given by

U =




ρ

ρu
ρv

ρE


 , F =




ρu

ρu2 + p
ρuv

u(ρE + p)


 , G =




ρv

ρuv

ρv2 + p

v(ρE + p)


 . (22)

In these expressions,ρ is the mass density; u andv are, respectively, the x- and y-components
of the gas velocity; p is the static pressure, and E is the total energy. The system is closed
with the equation of state for an ideal gas,

p = ρ(γ − 1)

(
E − u2 + v2

2

)
, (23)

where γ is the ratio of specific heats.

4.2. Flow Solver

The base solver used for the simulations in this investigation is FUN2D: a fully implicit,
unstructured grid, vertex-based, finite volume code developed by Dr. W. K. Anderson,
formerly of NASA Langley. The Osher upwind scheme [6] is used to evaluate fluxes at cell
interfaces. A backward-Euler time stepping method is used to drive the solution to a steady
state. An approximate solution of the linear system of equations formed at each time step
is obtained using several iterations of a point-iterative Gauss–Seidel-type method. Further
details pertaining to the flow solver can be found in reference [12].

4.3. Adjoint Solver

After each flow solution in an adaptive run, the coarse-grid adjoint is obtained by solving
the linear system of equations given in (9). Although this system can be solved directly using
GMRES [15], a time-like derivative is added and the solution is obtained by marching in
time, much like the flow solver,{

AH

�t
+

[
∂ RH

∂UH

]T
}

(�	H )n =
(

∂ fH

∂UH

)T

−
[
∂ RH

∂UH

]T

(	H )n, (24)

where (	H )n+1 = (	H )n + (�	H )n and AH is a diagonal matrix containing the control-
volume areas associated with each node in �H . The time term can be used to increase the
diagonal dominance of the system for cases in which GMRES alone would tend to stall.
Generally, this results in a more robust adjoint solver. Preconditioning is achieved using a
point-iterative scheme similar to that used in the flow solver. Further details concerning the
adjoint solver can be found in reference [12].

4.4. Functionals

The functionals chosen for the present study are those of common interest in aeronautical
applications: the lift, drag, and moment coefficients. These outputs are all expressible as
surface integrals over parts of the domain boundary. Let ∂�′ denote that portion of the
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continuum boundary over which aerodynamic forces are to be computed, such as the surface
of an airfoil or the walls of a channel. The resultant force �F R acting on ∂�′ due to the inviscid
flow is given by

�FR ≡
∫

∂�′
p �n ds, (25)

where �n is the unit normal vector on ∂�′. The lift L and drag D are defined as the components
of �FR perpendicular and parallel, respectively, to the free-stream velocity, �V∞,

L ≡ | �FR| sin θ, (26)

D ≡ | �FR| cos θ, (27)

where θ is the angle between �V∞ and �FR . In two dimensions, an implicit definition for θ

that accounts for the proper sign convention is

sin θ ≡
( �V∞

| �V∞| ×
�FR

| �FR|

)
· �k,

where �k is the unit vector pointing out of the page. The total moment exerted on ∂�′ about
�r0 = (x0, y0) is given by

M ≡
∫

∂�′
(�r − �r0) × p �n ds · �k, (28)

where �r = (x, y) is the position vector measured with respect to the origin. Finally, the lift,
drag, and moment coefficients are defined, respectively, as

CL ≡ L

q∞c
, (29)

CD ≡ D

q∞c
, (30)

CM ≡ M

q∞c2
, (31)

where q∞ = ρ∞V 2
∞/2 is the free-stream dynamic pressure and c is a reference length such

as the airfoil chord length.

4.5. Projection Operators

In order to compute the error estimate given by (10), we must define the projection op-
erators I H

h and J H
h introduced in (2) and (8). These operators map coarse-grid primal and

adjoint solutions, respectively, onto the fine grid. For the purposes of computing error esti-
mates, a quadratic projection operator, Q H

h , is used for both the primal and adjoint solutions.
That is, I H

h ≡ J H
h ≡ Q H

h . The projection is performed by constructing a quadratic inter-
polant over each coarse-grid element using a local least squares procedure to be described
below.
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To compute the adaptation parameter defined in (16), we use the same quadratic projection
operator, Q H

h , and a linear projection operator, L H
h . The linear operator represents simple

linear interpolation over each coarse-grid element.
The following method is used to calculate the quadratic projection operator, Q H

h . Consider
a generic scaler function, φ, and its derivatives, φx and φy , sampled at the nodes of the coarse
grid. Over each coarse-grid element, k, we can establish the following linear distributions

φ̄ =
3∑

i=1

Niφ
i , (32)

φ̄x =
3∑

i=1

Niφ
i
x , (33)

φ̄ y =
3∑

i=1

Niφ
i
y, (34)

where φi , φi
x , and φi

y are the sampled values at the three vertices of element k, and Ni are
the standard shape functions for a linear triangle [19]. A quadratic interpolant of φ over
element k can be represented as

φ̃ =
6∑

j=1

Ñj φ̃ j , (35)

where Ñj are the shape functions for a quadratic triangle [19], and φ̃ j are the unknown
coefficients to be determined. The least squares problem can be cast as the following un-
constrained minimization: find z∗ = {φ̃∗

1, φ̃
∗
2, . . . , φ̃

∗
6}T such that �(z∗) = minz �(z), where

�(z) =
∫

�k

[(φ̃(z) − φ̄)2 + (φ̃x (z) − φ̄x )
2 + (φ̃ y(z) − φ̄ y)

2] d�. (36)

Once z∗ has been determined for element k, it is substituted back into (35) yielding the
desired interpolant. The procedure is repeated for all elements in the coarse grid.

4.6. Grid Refinement

The original grids (prior to adaptive refinement) were generated using AFLR2: an
advancing-front/local-reconnection, unstructured, triangulator developed by Dr. D. Mar-
cum at Mississippi State University [11]. During the adaptive runs, a Delaunay node inser-
tion and local retriangulation algorithm is used for refining the grids. The algorithm attempts
to satisfy a prescribed element size distribution such as the one implied by (20). If more than
50% of the elements in the current grid are flagged for refinement, then the desired element
size distribution obtained from (20) is scaled so that no more than half of the elements are
refined from one adaptive iteration to the next. This measure may be triggered in the early
stages of an adaptive run if the prescribed error level for the functional is very low relative
to the resolution of the initial grid.

Grid coarsening is not performed in the current study. Requests for larger element sizes
are simply ignored by the refinement algorithm. Coarsening could be introduced into the
adaptive procedure, if desired, with minor modifications to the proposed adaptive strategy.
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Various grid quality measures are incorporated as postprocessing steps after the initial
Delaunay refinement: edge swapping is used to reduce the maximum node degree in the
triangulation to 7, a node removal algorithm is used to remove nodes of degree lower than 5,
and smoothing of select regions of the grid is performed to improve element aspect ratios.

5. NUMERICAL RESULTS

Several inviscid test cases are presented to demonstrate the effectiveness of the proposed
grid adaptive procedure. Comparisons are made with a commonly used gradient-based adap-
tive method [3, 5, 18]. The proposed output-based scheme is shown to compare favorably
in terms of accuracy, efficiency, and reliability relative to the gradient-based scheme.

5.1. Gradient-Based Adaptive Method

A gradient-based adaptive method is implemented for the purpose of comparatively
assessing the performance of the proposed output-based method. The adaptive indicator
is based on the local magnitude of the second derivatives in either the computed pres-
sure or Mach number scaled with Hr

k , where Hk is the local element size and r = 2 or 3
[3, 5, 18]. The elemental second derivatives are estimated using the quadratic resconstruc-
tion procedure described in Section 4.5. The adaptive criterion requires that the value of the
indicator be less than some predetermined threshold value for all elements. In the absence
of any rigorous relationship to the functional error, the threshold values used in this work
are chosen heuristically depending on the field quantity being adapted on and the value
of r . While the threshold value influences the extent to which the grid is refined, it does
not change the general refinement pattern of the final grid. Hence, meaningful comparisons
with the output-based adaptive patterns are possible. If the adaptive indicator for an element
is less than the predetermined threshold value, the element is flagged for refinement and
the desired new element size is set to half of its original size. The gradient-based method
is implemented using the same grid refinement algorithm used for the proposed output-
based scheme (as described in Section 4.6). Further implementation details can be found in
reference [18].

5.2. M∞ = 0.38 Gaussian Bump

The first test case is subsonic flow in a channel of height 10 and length 20 with an
inlet Mach number of M∞ = 0.38. The shape of the lower wall is a Gaussian of amplitude
0.5 centered at the mid-length of the channel. The purpose of this test case is to examine
convergence rates of various quantities associated with the base solver and error estimation
procedure. No adaptation is performed for this test case. A hierarchy of eight embedded grids
is constructed for the purposes of conducting the convergence tests. Figure 2 shows a plot of
the computed Mach number distribution on the finest grid. Three functionals are considered:
the coefficients of drag, lift, and moment acting on the walls of the duct. The moment is
computed with respect to the origin. Figure 3 shows plots of the base error in these functionals
and the remaining error after correction. The remaining error is measured with respect to
fine-grid values corresponding to N = 2 (see Section 2). The base value of the drag converges
like O(h3), whereas the lift and moment coefficients appear to converge at a slightly lower
rate. In all cases, the remaining error after correction is observed to be superconvergent,
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FIG. 2. Gaussian bump test case: M∞ = 0.38, α = 0◦. Computed Mach number distribution.

exhibiting approximately O(h4) convergence. Figure 4 shows convergence plots of the
global and local adaptation parameters defined in (18) and (19), respectively. The local
adaptation parameter ηk is evaluated over an interior element located approximately 0.5 units
above the peak of the Gaussian bump, and over a boundary element bordering the peak. The
local adaptation parameter on the boundary is observed to converge essentially as O(h2),
one order slower than in the interior. Even slower convergence would be expected near
singularities, discontinuities, or geometric irregularities such as sharp corners. The global
adaptation parameter exhibits approximately O(h2.5) convergence. The convergence rates
of these parameters are used as a guide in determining an appropriate value for the relaxation
parameter ω that appears in (20).

5.3. M∞ = 0.95 NACA 0012 Airfoil

This test case involves inviscid, transonic flow past a NACA 0012 airfoil [18] with a
free-stream Mach number of M∞ = 0.95, and angle of attack, α = 0◦. The drag coefficient
is chosen as the functional of interest in this case. Figure 5 shows plots of the computed
Mach number distribution for a well-resolved solution. The left plot is a blow-up near the
airfoil; the right plot illustrates some of the flow features further away from the airfoil. In
this test case, the flow accelerates as it passes over the leading edge section through the
sonic line to supersonic speeds. The flow then encounters an oblique shock at the trailing
edge after which it remains at a low supersonic Mach number. Further downstream of the
airfoil, a weak normal shock occurs lowering the Mach number to subsonic conditions.

FIG. 3. Gaussian bump test case: M∞ = 0.38, α = 0◦. Convergence plots of the error in the functional and the
remaining error after correction. Errors are measured with respect to fine-grid values corresponding to N = 2.
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FIG. 4. Gaussian bump test case: M∞ = 0.38, α = 0◦. Convergence plots of the global and local adaptation
parameters as defined in (18) and (19), respectively.

Figures 6 and 7 show adaptive results using the proposed output-based adaptive procedure.
Desired error levels of eo = 0.01 and eo = 0.0005 were specified, respectively. The drag is
plotted versus the total number of nodes in the corresponding grid. Also shown is the
corrected drag on each grid after using the proposed error estimation procedure to correct
the base value. For comparison, the drag convergence on a series of uniformly refined grids
is also plotted (upper-most curve). These grids were generated by subdividing each of the
edges in the original grid into n equal segments for values of n = 2, 3, . . . , 8. The original
grid in the hierarchy of uniformly refined grids is identical to the starting grid in the adaptive
run. The extrapolated value in the figure is obtained using a Richardson extrapolation of
the three finest, uniformly refined grids.

In both adaptive cases the desired error levels are surpassed, the drag predictions converge
to the correct value, and the adaptive process self-terminates after only two or three itera-
tions. Note that the grid is refined near the leading edge region where the flow is rapidly
accelerating. There is also some modest refinement near the trailing edge of the airfoil.
Conversely, the oblique shock and the normal shock downstream of the airfoil are not
resolved by the adaptive algorithm.

Also of interest is the manner in which the adaptive procedure converges for different
requested error levels, e0. Comparing Figs. 6 and 7, we see that when e0 is relatively large
(e.g., e0 = 0.01), the adaptive algorithm adds only a limited number of nodes (less then

FIG. 5. NACA 0012 test case: M∞ = 0.95, α = 0◦. Computed Mach number distributions. Left: blow up near
the airfoil; right: more distant view.
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FIG. 6. NACA 0012 test case: M∞ = 0.95, α = 0◦. Left: error convergence in the computed drag during a
typical adaptive run. The proposed output-based adaptive algorithm is used. A requested error level of eo = 0.01
was prescribed. Right: final adapted grid.

50 new nodes were added) to quickly raise the desired accuracy. However, when higher
accuracy is requested (i.e., lower values of e0), the adaptive procedure tends toward more
global refinement. For e0 = 0.0005, the initial refinement more than triples the grid size,
adding over 2000 new nodes.

Figure 8 shows plots of the initial (top left) and final (top right) grids in a typical adaptive
run using the proposed output-based scheme. Below each of these are the corresponding
distributions of the adaptation parameter εk . It is evident that the adaptation parameter was
effectively reduced during the adaptive process to a level below the minimum contour level
on the plot.

Many adaptive strategies in use today employ flow gradient or curvature-based indicators
for grid refinement [3, 18]. Such indicators are very sensitive to shocks and would, therefore,

FIG. 7. NACA 0012 test case: M∞ = 0.95, α = 0◦. Left: error convergence in the computed drag during a
typical adaptive run. The proposed output-based adaptive algorithm is used. A requested error level of eo = 0.0005
was prescribed. Right: final adapted grid.
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FIG. 8. NACA 0012 test case: M∞ = 0.95, α = 0◦. Top left: original grid. Bottom left: adaptation parameter,
εk , on the original grid. Top right: final adapted grid using the proposed output-based adaptive method with a
prescribed error level of eo = 0.0005. Bottom right: adaptation parameter on the final grid.

aggressively refine the grid in these regions. For many common functionals of interest in
aeronautical applications, continual refinement of shocks and other isloated flow features
would not necessarily enhance the accuracy of the predicted functionals. In some cases, this
type of refinement could even lead to incorrect results [18].

We demonstrate the performance of gradient-based adaptive indicators for comparison
with our output-based approach. Implementation details are given in Section 5.1 and ref-
erence [18]. The left-hand plot in Fig. 9 shows the convergence of the computed drag on
each grid during a typical adaptive run. The adaptive indicator is based on the magnitude
of the second derivatives in the pressure scaled with H 2

k where Hk is the local element size.
It is evident that both the corrected and uncorrected values of the drag are converging to
an erroneous value somewhat less than the extrapolated value. Furthermore, the adaptive
process did not show signs of self-terminating and was, therefore, halted after eight adap-
tive iterations. The right plot in Fig. 9 shows an intermediate grid in the adaptive sequence.
The pressure-based indicator, being extremely sensitive to the shock structure, continued
to refine the grid near the shocks despite the lack of convergence in the drag.

Figure 10 is analogous to Fig. 9 in almost every regard except that the adaptive indicator
used in this run is based on the magnitude of the second derivatives in the pressure scaled
with H 3

k instead of H 2
k . This is recommended as an improvement in reference [18]. This

time, the predicted values for the drag are converging to an erroneous value significantly
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FIG. 9. NACA 0012 test case: M∞ = 0.95, α = 0◦. Left: error convergence in the computed drag during a
typical adaptive run. A gradient-based adaptive strategy is used [18] with an indicator based on the magnitude of
the second derivatives in the pressure scaled with H 2

k where Hk is the local element size. Right: intermediate grid
in the adaptive run.

larger than the extrapolated value, however, it appears as though the adaptive process itself
would have eventually terminated had it not been stopped after eight iterations. Note that the
functional corrections in Figs. 9 and 10 are providing a significant improvement in accuracy.
Nevertheless, the corrected values are still not converging to the extrapolated value of the
drag.

Finally, Fig. 11 shows analogous results using an indicator based on the magnitude
of the second derivatives in the Mach number scaled with H 2

k . As with the pressure-based
scheme, the predicted drag converges to an erroneous value slightly less than the extrapolated
value. Furthermore, the adaptive process does not appear to be terminating. The Mach

FIG. 10. NACA 0012 test case: M∞ = 0.95, α = 0◦. Left: error convergence in the computed drag during a
typical adaptive run. A gradient-based adaptive strategy is used [18] with an indicator based on the magnitude of
the second derivatives in the pressure scaled with H 3

k where Hk is the local element size. Right: intermediate grid
in the adaptive run.



58 VENDITTI AND DARMOFAL

FIG. 11. NACA 0012 test case: M∞ = 0.95, α = 0◦. Left: error convergence in the computed drag during a
typical adaptive run. A gradient-based adaptive strategy is used [18] with an indicator based on the magnitude of
the second derivatives in the Mach number scaled with H 2

k where Hk is the local element size. Right: intermediate
grid in the adaptive run.

number indicator continues to refine the grid near the shocks without any corresponding
improvement in the accuracy of the drag.

5.4. M∞ = 6.0 NACA 0012 Airfoil

The next test case involves inviscid, supersonic flow past a NACA 0012 airfoil with a
free-stream Mach number of M∞ = 6.0, and angle of attack, α = 0◦. The drag coefficient
is chosen as the functional under consideration. In particular, we are interested in the
performance of the proposed adaptation algorithm in the presence of strong shocks. The
output-based adaptive results are shown in Fig. 12. Convergence of the drag to the desired
error limit (in this case e0 = 0.001) is achieved with under 4000 nodes. By comparison, the
uniform refinement cases have still not converged even after 60,000 nodes. The adaptation
occurs around the body in general but is most significant at the leading edge and at the bow
shock in the leading edge region.

Pressure-based adaptive results are shown in Fig. 13. The adaptive algorithm does not
appear to be self-terminating after the fifth adaptive iteration and the drag is exhibiting
oscillatory convergence. Refinement for the pressure-based scheme is much more uniform
between the bow shock and the airfoil, in contrast to the output-based method, which favors
leading-edge refinement. As one would expect, the leading-edge is a dominant region for
determining aerodynamic performance.

5.5. M∞ = 0.4, α = 5◦ NACA 0012 Airfoil

In this case, we consider subsonic flow past a NACA 0012 airfoil with a free-stream
Mach number of M∞ = 0.4, and an angle of attack of α = 5◦. The functional of interest is
the moment coefficient taken about the leading edge. The output-based adaptive results are
shown in Fig. 14. Convergence of the moment to the desired error tolerance of e0 = 0.001
is achieved in three to four adaptive iterations with a final converged grid containing ap-
proximately 9000 nodes.
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FIG. 12. NACA 0012 test case: M∞ = 6.00, α = 0◦. Upper left: error convergence in the computed drag during
a typical adaptive run. The proposed output-based adaptive algorithm is used. A requested error level of eo = 0.001
was prescribed. Upper right: final adapted grid. Lower: blow-up of airfoil leading edge region.

Pressure-based adaptive results are shown in Fig. 15. The computed moment coefficient
fluctuates erratically during the pressure-based adaptive process and does not appear to be
converging to any particular value. Furthermore, the adaptive process does not show signs
of terminating after the eighth iteration. In contrast, the adjoint-based adaptive scheme
provides a stable, monotonic convergence of the moment to the extrapolated value and
self-terminates once the requested error level has been surpassed.

5.6. Advanced Energy Efficient Transport (EET) Three-Element Airfoil

The next test case is inviscid, subsonic flow past the advanced energy efficient transport
(EET) three-element airfoil [9]. Adaptive simulations were performed for a free-stream
Mach number of M∞ = 0.26, and an angle of attack of α = 8◦. The functional of interest in
this case is the lift coefficient for the airfoil (i.e., all three-elements). Figure 16 shows the
computed Mach number contours and streamlines for this test case.

The results for the output-based adaptation are shown in Fig. 17 for an error level of
eo = 0.05. The adaptive algorithm surpasses the requested error level and self-terminates at
a final grid of less than 9000 nodes. In comparison, the uniform-grid solutions attain about
the same error level at approximately 70,000 nodes.
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FIG. 13. NACA 0012 test case: M∞ = 6.00, α = 0◦. Upper left: error convergence in the computed drag during
a typical adaptive run. A gradient-based adaptive strategy is used [18] with an indicator based on the magnitude
of the second derivatives in the pressure scaled with H 2

k where Hk is the local element size. Upper right: final
adapted grid. Lower: blow-up of airfoil leading edge region.

FIG. 14. NACA 0012 test case: M∞ = 0.4, α = 5◦. Left: error convergence in the computed leading-edge
moment during a typical adaptive run. The proposed output-based adaptive algorithm is used. A requested error
level of eo = 0.001 was prescribed. Right: final adapted grid.
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FIG. 15. NACA 0012 test case: M∞ = 0.4, α = 5◦. Left: error convergence in the computed leading-edge
moment during a typical adaptive run. A gradient-based adaptive strategy is used [18] with an indicator based on
the magnitude of the second derivatives in the pressure scaled with H 2

k where Hk is the local element size. Right:
final adapted grid.

Figure 18 shows adaptive results using the pressure-based adaptive method. Even though
the flow field is smoothly varying (i.e., no shocks), the (uncorrected) life appears to be
converging to an erroneous value and never achieves the level of accuracy of the final
output-based grid. Note that the error estimation procedure dramatically improves the lift
error but still does not quite match the apparent asymptotic lift value of the uniform-grid
results. Based on visual inspections of the grids in Figs. 17 and 18, we attribute the lack of

FIG. 16. Advanced EET 3-element airfoil test case: M∞ = 0.26, α = 8◦. Computed Mach number distribution
and streamlines.
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FIG. 17. Advanced EET 3-element airfoil test case: M∞ = 0.26, α = 8◦. Upper left: error convergence in the
computed lift during a typical adaptive run. The proposed output-based adaptive algorithm is used. A requested
error level of eo = 0.05 was prescribed. Upper right: final adapted grid. Lower: blow-up near slat and flap.

convergence in the lift using the pressure-based scheme to a lack of grid resolution in the
following regions: the rear portion of the suction side of the main element, the pressure side
of the main element, and the pressure side of the flap. During the last four pressure-based
adaptive iterations, there is little or no grid refinement in these regions. Most of the nodes
are being added near the geometric irregularities of the three elements (i.e., at the sharp
corners).

5.7. M∞ = 3.0 Two-Element Airfoil

In this test case, we study the interactions of two airfoils in a M∞ = 3.0 free-stream.
The left plot of Fig. 19 shows the Mach number distribution for this flow. The airfoils are
positioned such that the bow shock of the upstream airfoil interacts with the surface of the
downstream airfoil. The functional is chosen to be the pressure drag on the downstream
airfoil. The right plot of Fig. 19 shows a contour plot of the adjoint x-momentum vari-
able based on the lower-airfoil drag. The results for the output-based and pressure-based
algorithms are shown in Figs. 20 and 21, respectively. The output-based approach (with an
error tolerance of e0 = 0.001) converges the lower airfoil drag in less than 4000 nodes while
the pressure-based approach requires over 37,000 nodes to achieve the same accuracy. The
differences in adaptation are striking with the pressure-based approach excessively refining
all shock waves including those which do not play any role in determining the lower airfoil
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FIG. 18. Advanced EET 3-element airfoil test case: M∞ = 0.26, α = 8◦. Upper left: error convergence in the
computed lift during a typical adaptive run. A gradient-based adaptive strategy is used [18] with an indicator based
on the magnitude of the second derivatives in the pressure scaled with H 2

k where Hk is the local element size.
Upper right: final adapted grid. Lower: blow-up near slat and flap.

drag (e.g., the upper surface shocks on the upstream airfoil). Also, the pressure-based re-
finement of the leading-edge of the two airfoils is nearly identical, whereas the output-based
approach refines only those features which dominate the lower airfoil drag. Specifically, the
leading-edge region (including the bow shock) of the lower airfoil, the oblique shock from

FIG. 19. Two airfoil (NACA 0012) test case: M∞ = 3.00, α = 0◦. Left: computed Mach number distribution.
Right: adjoint x-momentum variable based on the lower-airfoil drag.
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FIG. 20. Two airfoil (NACA 0012) test case: M∞ = 3.00, α = 0◦. Upper left: error convergence in the com-
puted drag on the downstream (i.e., lower) airfoil during a typical adaptive run. The proposed output-based
adaptive algorithm is used. The adjoint is based on the lower-airfoil drag. A requested error level of eo = 0.001
was prescribed. Upper right: final adapted grid. Lower: blow-up of leading edge regions.

the upper airfoil, and the leading-edge region of the upper airfoil are adapted. None of the
trailing edge shocks are refined as they play little role in the drag.

5.8. M∞ = 0.8, α = 1.25◦ NACA 0012 Airfoil

The last test case is transonic flow past a NACA 0012 airfoil with a free-stream Mach
number of M∞ = 0.8, and an angle of attack of α = 1.25◦. This flow exhibits a strong shock
on the upper surface of the airfoil and a relatively weaker shock on the lower surface. The
functional of interest is chosen to be the lift coefficient.

Output-based adaptive results are shown in Figs. 22 and 23 for prescribed error levels
of eo = 5% CL and eo = 2.5% CL , respectively. Pressure-based adaptive results are pre-
sented in Fig. 24. It is evident that the lift converges poorly on the uniformly refined
grids for this test case. This is attributed to inadequate grid resolution in the trailing
edge region of the seed grid. Note that this seed grid is also the starting grid in each
of the adaptive runs. For this test case only, the extrapolated lift value in the conver-
gence plots of Figs. 22–24 is based on a different set of uniformly refined grids. The
alternate seed grid is chosen as the final adapted grid in the eo = 2.5% CL output-based
run; it contains 5214 nodes and is shown in Fig. 23. This grid is globally refined twice
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FIG. 21. Two airfoil (NACA 0012) test case: M∞ = 3.00, α = 0◦. Upper left: error convergence in the com-
puted drag on the downstream (i.e., lower) airfoil during a typical adaptive run. A gradient-based adaptive strategy
is used [18] with an indicator based on the magnitude of the second derivatives in the pressure scaled with H 2

k

where Hk is the local element size. Upper right: final adapted grid. Lower: blow-up of leading edge regions.

FIG. 22. NACA 0012 test case: M∞ = 0.8, α = 1.25◦. Left: error convergence in the computed lift coefficient
during a typical adaptive run. The proposed output-based adaptive algorithm is used. A requested error level of
eo = 5% CL was prescribed. Right: final adapted grid.
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FIG. 23. NACA 0012 test case: M∞ = 0.8, α = 1.25◦. Left: error convergence in the computed lift coefficient
during a typical adaptive run. The proposed output-based adaptive algorithm is used. A requested error level of
eo = 2.5% CL was prescribed. Right: final adapted grid.

yielding two additional fine grids corresponding to n = 2 and n = 4. The n = 4 grid contains
81840 nodes. The final lift value is obtained by performing a Richardson extrapolation on
the three grids in the series. The implied convergence rate from the extrapolation is first
order.

It is apparent from Figs. 22 and 23 that the output-based algorithm terminated well
within the prescribed error limits for the lift. Note that the weak shock on the lower surface
is only slightly refined in the eo = 5% CL case. Evidently, refining the lower shock is not
as important as refining the leading edge, upper shock region, and trailing edge for the
given error tolerance. When the tolerance is lowered to eo = 2.5% CL , however, it becomes
beneficial to resolve the weaker shock as well.

FIG. 24. NACA 0012 test case: M∞ = 0.8, α = 1.25◦. Left: error convergence in the computed lift coefficient
during a typical adaptive run. A gradient-based adaptive strategy is used [18] with an indicator based on the
magnitude of the second derivatives in the pressure scaled with H 2

k where Hk is the local element size. Right: final
adapted grid.
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FIG. 25. NACA 0012 test case: M∞ = 0.8, α = 1.25◦. Comparison of final adapted grids using the proposed
output-based method with eo = 5% CL (left), eo = 2.5% CL (middle), and the pressure-based method (right). Top
row: blow-up of leading edge region; 2nd row: shock region on suction side; 3rd row: shock region on pressure
side; bottom row: trailing edge region.

We see from Fig. 24 that the pressure-based adaptive method tends to refine the shock
structure further away from the airfoil surface, where it is less important to have high
resolution with respect to the lift.

Figure 25 shows blow-ups of the final refined grids for each of the adaptive runs. The
pressure-based scheme refines the leading edge and shock regions significantly more than
does the output-based method; however, it comparatively underrefines the trailing edge. In
light of the convergence results, we conclude that the resolution of the trailing edge region
is critical for computing an accurate lift in this test case. This is further elucidated in Fig. 26
where plots of the x-momentum adjoint variable are shown. The magnitude of the adjoint
is plotted using a logarithmic contour distribution. It is evident from the right-hand plot that
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FIG. 26. NACA 0012 test case: M∞ = 0.8, α = 1.25◦. Adaptive adjoint solution using the proposed output-
based method with eo = 2.5% CL . Left: magnitude of the computed x-momentum adjoint variable based on the
lift. Right: blow-up near trailing edge.

the magnitude of the adjoint is very large at the trailing edge, implying that the functional
error is extremely sensitive to local residual errors in the trailing edge region. Other features
of interest include a singularity in the adjoint along the stagnation streamline and a weak
discontinuity upstream of the primal shock on the upper surface.

6. CONCLUSION

An error estimation and grid adaptive procedure was presented for improving the accu-
racy of specified integral outputs such as lift or drag. The procedure is based on a discrete
adjoint formulation in which the estimated error in the functional can be directly related to
the local residual errors of both the primal and adjoint solutions. The effectiveness of the
adaptive/estimation procedure was demonstrated by application to several two-dimensional,
inviscid test cases. Comparisons were made with a commonly used gradient-based adap-
tive scheme. In many cases, the gradient-based scheme either failed to self-terminate or
produced erroneous values for the predicted functional at termination. For every test case
considered, the proposed output-based scheme succeeded in self-terminating and surpassed
the prescribed accuracy level for the chosen functional.

Future work will include the development and implementation of output-based adaptive
procedures for Navier–Stokes computations. Many important viscous problems encountered
in industry involve multiple scales and isolated flow features such as shocks, wakes, and
boundary layers. It is not always clear, even for the most experienced practitioners of CFD,
how the grid should be adapted in order to enhance the accuracy of important outputs while
maintaining computational efficiency. It is evident that some of the most commonly used
gradient-based adaptive algorithms cannot achieve this reliably. The potential benefit of
a robust output-based adaptive scheme is that these outputs can be predicted accurately,
efficiently, and in an automated manner, saving valuable time and resources during the
design phase.
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